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A B S T R A C T

Crowdsourced temperature data from citizen weather stations (CWS) in urban area offer valuable insights into 
intra-urban temperature distribution but are often challenged by a significant number of missing values. Existing 
gap-filling methods, typically effective for random gaps and low missing rates, are inadequate for the continuous 
gaps and high missing rates common in CWS recordings. This study introduces a novel data-driven approach to 
fill these gaps by modelling relationships between CWS data and official weather station (OWS) records during 
periods of data availability. We evaluate various feature sets and data-driven algorithms, including Multiple 
Linear Regression (MLR), Random Forest (RF), and Multilayer Perceptron (MLP), using a complete CWS tem
perature dataset from July 2018 in London. The MLP-based models, which include features such as preceding 
and subsequent air temperature along with past solar radiation, demonstrate superior performance across various 
missing data conditions. In the most challenging case, with a missing rate of 70–80% and continuous gaps, the 
MLP model achieves a Mean Absolute Error of 0.59 ◦C, a Root Mean Squared Error of 0.73 ◦C, and a coefficient of 
determination (R2) of 0.94. The robustness of the MLP algorithm is further validated across multiple complete 
CWS datasets from different areas in London. This study offers effective strategies for handling common missing 
data conditions in CWS datasets and serves as a valuable reference for future machine learning applications in 
urban climatology.

1. Introduction

1.1. Background

With global warming, heatwaves have become more frequent, 
intense, and prolonged [28]. Extreme heat significantly impacts human 
health, wellbeing, and safety, making understanding heat stress a crit
ical health concern, especially in urban areas where the urban heat is
land (UHI) effect exacerbates heat exposure compared to rural areas 
[17]. However, the diversity in urban land cover and urban morphology 
[41] leads to substantial temperature variations across urban area, with 
difference sometimes exceeding 5 ◦C [34]. To effectively understand and 
mitigate urban heat stress, it is crucial to study urban temperature dis
tribution at a fine spatial resolution.

Urban temperature distribution can typically be obtained through 

three primary methods [30]: numerical modelling, remote sensing, and 
onsite measurements. Numerical models, while capable of fine spatial 
resolution, require significant computational resources, and their accu
racy depends on the precision of inputs, some of which may be uncertain 
[32]. Remote sensing provides land surface temperature data, but these 
measurements do not fully represent air temperature [37]. Onsite 
measurements, on the other hand, offer the most accurate representa
tion of air temperature. Onsite temperature data can be obtained from 
two key sources: official weather stations (OWS), typically established 
by the World Meteorological Organization, and citizen weather stations 
(CWS). The latter are installed by the public for personal or educational 
purposes and offer a crowdsourced alternative to traditional measure
ments. [26].

Traditionally, OWS have been used to record long-term time series of 
outdoor meteorological variables. However, their sparse 
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distribution—often located in rural areas or urban parks—limits their 
ability to accurately represent the diverse microclimates found in urban 
environments. In recent years, CWS have gained popularity due to their 
lower cost and ease of installation [33]. The dense presence of CWS in 
some cities has made their temperature data increasingly valuable for 
capturing urban air temperature distribution. For example, Fenner et al. 
[9] used both OWS and nearly 2000 CWS in Berlin to analyse how 
location choice and time of day influence the variability of urban heat 
island (UHI) intensity. Similarly, Benjamin et al. [4] used CWS tem
perature data to estimate the UHI effect and assess building hea
ting/cooling loads in London. Brousse et al. [6] also employed CWS data 
to examine urban heat patterns and the impact of urban heat advection 
in southeast England and Greater London. These studies underscore the 
significant potential of CWS data for urban heat studies, offering a more 
granular view of temperature variability in cities.

The main challenge with CWS is the relatively low data quality 
compared to OWS data. CWS time series often contain gaps due to sensor 
failures, connection issues, or misuse of sensors [3,24]. To improve the 
reliability of CWS data, a statistically based quality control method has 
been developed by Fenner et al. [8]. Through statistical analysis, unre
liable data can be removed, and gaps with a single missing value can be 
filled using linear interpolation. However, for time series with higher 
missing rates (e.g. more than 20% of the data), which typically indicates 
large gaps, linear interpolation is not valid for gap filling, and all values 
during that period are deleted in the quality control process [8,36]. This 
leads to a significant loss of CWS data and reduces the amount of 
available data. Furthermore, biased results are more likely to be inferred 
from such smaller samples, compromising the robustness of statistical 
analysis [19]. Additionally, major existing temperature forecasting 
models cannot proceed with gaps in training data [29]. Thus, the 
application of CWS data, such as forecasting local climate conditions, is 
further limited by these gaps. To improve availability and application of 
CWS data, effective data filling methods, especially for CWS data with 
high missing rates, are required.

1.2. Related work

Currently, no established method exists for filling missing data in 
CWS air temperature datasets with high missing rates. To address this, 
we review existing data-filling techniques to identify the most suitable 
method for CWS data imputation. Due to the limited research on outdoor 
air temperature imputation, we also consider gap-filling methods from 
other time series data, such as energy use, for a broader comparison.

Missing data conditions in previous research vary in both the missing 
rate and gap length. Both are primary factors influencing the effective
ness of gap-filling techniques. The missing rate refers to the percentage 
of data points missing from the time series. Data gaps are typically 
categorised by length into random (short-term) and continuous (long- 
term) gaps. Random gaps involve short periods without data, such as 
hourly or daily intervals, whereas continuous gaps refer to extended 
periods, such as weekly or monthly intervals in the time series [10].

1.2.1. Filling methods
Simple statistical models, such as interpolation, moving averages, 

local linear regressions, and K-nearest neighbours, are commonly used 
to fill random gaps by leveraging nearby points [7,16]. However, these 
models are less effective when significant changes occur within the gaps, 
and their performance declines as gap length increases due to insuffi
cient data points near the gap’s centre [36].

Models that capture temporal dependencies in time series can 
overcome some of the limitations of simple statistical models. By using 
all available observations, rather than just nearby data, these models are 
more effective at managing sudden changes within data gaps and 
perform better as gap lengths increase. For example, Sarafanov et al. 
[29] trained a temporal model using evolutionary algorithms, which 
outperformed various interpolation methods when gap lengths exceeded 

30% of the sea surface height time series. Autoregression and recurrent 
neural networks (RNNs) are commonly used to capture time de
pendencies. Afrifa-Yamoah et al. [1] used an autoregressive model to fill 
10% of missing data in a 12-month hourly outdoor air temperature se
ries, effectively handling gaps of up to 30 consecutive hours with root 
mean squared error (RMSE) values between 1.03 ◦C and 1.29 ◦C. 
However, autoregressive models are limited in capturing complex 
nonlinear relationships. In contrast, RNNs such as Gated Recurrent Unit 
(GRU), and Long Short-Term Memory (LSTM), can model more intricate 
temporal dependencies. Han et al. [13] used GRU and LSTM to forecast 
local air temperature 24 h ahead, achieving RMSE of 2.96 ◦C for GRU 
and 4.72 ◦C for LSTM, though these models were employed for fore
casting rather than imputation. For gap filling, Ma et al. [23] proposed a 
bi-directional LSTM model for building energy data imputation, which 
outperformed the standard LSTM by incorporating both pre-history and 
post-history of the gaps. However, despite their strengths, these methods 
face limitations, particularly the propagation and accumulation of filling 
errors, which can reduce their effectiveness in addressing continuous 
gaps.

Some researchers have leveraged data segment similarity to fill gaps, 
thereby avoiding error propagation. For example, Lucbert et al. [22] 
utilised the hot deck method, which replaces gaps with observed values 
from similar cases identified based on relevant characteristics or vari
ables. Wang et al. [38] employed Generative Adversarial Networks to fill 
data gaps by training a generator to capture the patterns and structures 
of the original dataset, producing synthetic data as gap estimates.

With advancements in deep learning, researchers have begun 
transforming time series data into a two-dimensional matrix to apply 
image processing techniques such as graph neural networks, Partial 
Convolution (Pconv), Convolutional Neural Networks for data imputa
tion and forecasting [5,10,20]. While these techniques can capture both 
patterns and temporal relationships, their effectiveness in filling 
continuous gaps remain limited. For example, Fu et al. [10] used PConv 
to impute missing values with a large training dataset, achieving a co
efficient of determination (R²) of 0.6 for time series data with a 50% 
missing rate and gaps of up to two weeks. This result represents a 
meaningful advancement, while further improvement in accuracy may 
be necessary to meet practical application requirements. Moreover, 
these methods require substantial datasets and significant computing 
resources.

Some studies have addressed data gaps by using variables that are 
highly correlated with the time series. This approach builds relation
ships between the available data in the time series and corresponding 
highly correlated data during the same period, which are then applied to 
the missing periods. This method has proven effective for random gaps 
[1,16], though its effectiveness for continuous gaps remains unverified. 
Moreover, the approach is limited by the availability of highly corre
lated data, which may be absent for certain missing periods or entirely 
unavailable [16].

1.2.2. Filling performance
We further summarise the performance of different methods (Section 

1.2.1) under varying missing data conditions, as shown in Table 1. The 
best-performing model in each study is highlighted in bold in the ‘Filling 
model’ column. To emphasise their maximum potential, the "Best filling 
performance" column includes only the results for the most challenging 
conditions (i.e., largest gaps and highest missing rates). Under these 
conditions, complex algorithms like LSTM and image-based techniques 
generally outperform others due to their ability to capture intricate 
temporal dependencies and data patterns.

However, regardless of the method used, filling performance 
generally decreases as gap length increases. Several studies [10,21–23] 
have highlighted the particular challenges associated with filling 
continuous data gaps. Regarding the missing rate, while a high rate of 
missing data poses less of a challenge when gaps are short [16], longer 
gaps combined with a high missing rate generally lead to poorer 
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performance in data gap filling [10,23].
In addition, most studies rely solely on time series themselves to fill 

gaps, possibly due to the lack of strong correlations with external vari
ables or the focus on testing specific methods. However, in the case of 
CWS air temperature data, a strong correlation exists with meteorolog
ical variables consistently available from OWS. This correlation suggests 
that leveraging these relationships could serve as an effective approach 
for CWS data gap filling. Furthermore, the repeating patterns and cycles 
in CWS air temperature data indicate that relationships established 
during recorded periods can be effectively used to fill missing data in 
unrecorded periods.

1.3. Research aim and objectives

In this study, we aim to fill gaps in CWS temperature datasets across 
varying levels of missing data, including cases with high missing rates 
and continuous gaps, by leveraging their relationships with OWS 
meteorological data during the recorded period. To achieve this, we 
employ three representative data-driven methods for gap filling: Mul
tiple Linear Regression (MLR), Random Forest (RF), and Multi-Layer 
Perceptron (MLP). These methods range from simple statistical tech
niques to more advanced machine learning algorithms, providing a 
comprehensive approach to addressing data gaps. For reasons of 
computational efficiency, deep learning methods such as LSTM and 
imaging techniques were not included in this study. The benchmark 
dataset consists of CWS temperature data recorded in London between 
July 5 and July 31, 2018, a period that includes several heatwaves. The 
research objectives are: 

- To analyse the missing conditions of CWS air temperature data from 
July 2018 in London, focusing on missing rates and missing lengths. 
This analysis will identify representative missing conditions to guide 
the selection of the most efficient algorithm.

- To establish practical, precise, and robust training processes for the 
three data-driven algorithms, ensuring their optimal performance 
and allowing for fair comparison among them.

- To assess the impact of feature combinations, missing rates, and 
missing lengths on the performance of the three models, with the 
goal of identifying the best-performing algorithm and the optimal 
feature combination for gap filling.

- To test the robustness of the best-performing algorithm and feature 
combination by applying them to different locations.

2. Methodology

The proposed methodology is organised into five steps, as illustrated 
in Fig. 1. In Step 1, we analyse the raw CWS data to classify the missing 
data conditions, which forms the foundation for model construction and 
validation. Steps 2 to 4 focus on model development and evaluation, 
including data preparation and preprocessing to create training and test 
datasets. In Step 5, we design experimental scenarios to compare models 
trained using different algorithms and feature sets across various 
missing data conditions, allowing us to identify the most effective al
gorithm. Finally, the selected algorithm is applied to additional CWS 
datasets from other locations to assess the generalisation and robustness 
of the proposed method.

2.1. Data collection and analysis

2.1.1. CWS and OWS data
The dataset used in this study comprises input variables and the 

target estimate variable. CWS data was collected from July 5 to July 31, 
2018, a period that includes several heatwaves in the Greater London 
area, provided by the Netatmo network (https://weathermap.netatmo. 
com/). To ensure the quality of the CWS temperature recordings, we 
apply the quality check procedures (see Table A1 for details) from Step 
M1 to Step M4 as outlined by Fenner et al. [8]. For one-point missing 

Table 1 
Filling performance for various filling methods in previous research. The best-performing model in each study is highlighted in bold. NRMSE: Normalised Root Mean 
Square Error. See footnote for details.

Data type Worst missing condition Length of training data Filling methods c Predictors d Best filling 
performance

References

Missing 
rate

Largest 
gap length

Outdoor air 
temperature

0.1 30 5242 × (1 - missing 
rate)

Kalman Smoothed Time Series 
Model, Kalman Smoothed 
ARIMA, MLR

MLR: other weather 
parameters; Others: outdoor 
air temperature

RMSE = 0.9448 
◦C

[1]

Zone temperature of 
interior zone

0.4 312 1680 × (1 - missing 
rate)

LIN, SPL, KNN, MICE, MF, 
SVD-EM, SGD

Zone temperature of interior 
zone

NRMSE = 0.834 [7]

Outdoor air 
temperature

0.5 1 744 × (1 - missing rate) Mean imputation, LIN, MLR, 
MLP, SVM, RF

MLR: outdoor relative 
humidity; Others: outdoor air 
temperature

NRMSE = 0.047 [16]

Outdoor air 
temperature

0.21 168 17,545 × (1 - missing 
rate)

KNN, RNN, HD, LOCF Outdoor air temperature RMSE = 14.67 
◦C

[22]

Energy use 
(Electricity 
consumption)

0.9 70,176 ×
0.9 a

Length of other time 
series + 70,176 × (1 
-missing rate) b

Mean imputation, LIN, KNN, 
SVM, RF, FCNN, RNN, LSTM, 
LSTM-BIT

Electricity consumption R2 = 0.3876 [23]

Indoor air 
temperature

0.9 22 4 years × 0.3 CONV, FEED, LSTM Indoor air temperature RMSE = 0.49 ◦C [21]

Energy use (Energy 
consumption)

0.5 Two-week 
absence

1 year (8736) Image techniques (1D-CNN, 
2D-CNN, PConv)

Energy consumption R2 = 0.6 [10]

a 70,176 is the time series length, and 0.9 represents the missing rate, assuming the missing data forms a continuous gap.
b Length of other time series refers to the length of the other time series used to train the basic LSTM model, while 70,176 × (1 - missing rate) represents the data used 

for transfer learning.
c ARIMA: autoregressive integrated moving average; MLR: multiple linear regression; LIN: linear interpolation; SPL: spline interpolation; KNN: k-nearest neighbour; 

MICE: multiple imputations through chained equations; MLP: multilayer perception; SVM: support vector machines; RF: random forest; RNN: recurrent neural net
works; HD: hot deck; LOCF: last observation carried forward; LSTM: long short-term memory; LSTM-BIT: LSTM with bi-directional imputation and transfer learning; 
FCNN: fully connected neural network; CONV: convolutional; FEED: feed-forward; 1D-CNN: one-dimensional convolutional neural networks; PConv: Partial 
Convolution.

d Others: other filling methods; other weather parameters: such as precipitation, humidity, wind speed, wind direction (sine and cosine transformed), sea level 
pressure.
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gaps, linear interpolation (Step O1) is employed, as previous studies [7,
16] have demonstrated its effectiveness for small data gaps. Heathrow 
weather station is selected as the source for input meteorological vari
ables due to its comprehensive meteorological dataset.

2.1.2. Missing data condition of CWS data
To evaluate the effectiveness of the models in addressing common 

missing conditions in CWS temperature data, we analyse these condi
tions from two main perspectives: missing rate and missing length.

Fig. 2 shows the missing rate of each CWS in London during July 
2018, highlighting the prevalence of data gaps. Fig. 3 shows the ratio of 
CWS with missing rates exceeding various thresholds (x-axis) to the total 
number (1015) of CWS. Nearly half of the CWS recordings have a 
missing rate greater than 20%. According to the common strategy in 
existing research for handling missing conditions in CWS data, specif
ically the quality check Step O3 (Table A1), recordings with a missing 
rate over 20% are typically excluded from use, resulting in a substantial 
data loss. To improve the availability of CWS temperature data, it is 
necessary to develop effective data imputation methods for CWS data 

with high missing rates.
In addition to the missing rate, missing length is another crucial 

feature for describing missing data conditions. Existing researches often 
consider missing length separately from the missing rate. However, 
large missing lengths typically occur in conjunction with high missing 
rates. Fig. 4 shows the statistical analysis of the adjusted missing rate, 
defined as the proportion of missing data within each length range 
relative to the total missing data for each CWS in London during July 
2018. As the missing rate increases, the likelihood of continuous missing 
gaps also increases. When the missing rate is less than 30%, the length of 
the missing gaps is usually within 1 day, indicating random gaps. 
Conversely, when the missing rate is between 30% and 80%, the missing 
gaps typically extend beyond 1 week (168 h), suggesting that continuous 
gaps dominate. When the missing rate exceeds 80%, there is insufficient 
recorded data to provide meaningful statistical analysis. This analysis 
will inform the creation of missing data scenarios for the experimental 
setup detailed in Section 2.5.

2.2. Data preparation and preprocessing

2.2.1. Dataset selection
In real-world applications, models are trained on recorded data to 

estimate missing values. To evaluate model performance in this study, 
we use complete CWS recordings but introduce different types of gaps. 
The models’ effectiveness is then assessed by comparing the estimated 
values with the ‘true’ values of the missing data, i.e. the values within 
these artificial gaps.

Following the quality checks, only 78 out of 1015 CWS recordings 
are found to be complete. As noted by Afrifa-Yamoah et al. [1], the 
reliability of data imputation depends on the correlation between 
feature variables and missing data, with lower correlations typically 
resulting in poorer performance. To evaluate model performance under 
less-than-ideal conditions, we select CWS temperature data with the 
lowest correlation (correlation index = 0.80) to OWS temperature data 
from the complete dataset with its location shown in Fig. 5a. The cor
responding temperature recordings are shown in Fig. 5b.

Fig. 1. Overall workflow for filling CWS temperature missing data.

Fig. 2. Missing rates of CWSs in London in July 2018.
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2.2.2. Data splitting: training and test sets
To create realistic missing data conditions, we used missing patterns 

from incomplete CWS temperature recordings to introduce artificial 
gaps into selected complete CWS temperature recordings. For each 
common missing data condition (Fig. 4), we select a representative 
incomplete CWS recording as a reference. Fig. 6a shows the missing 
patterns of a reference incomplete recording, which includes one 
continuous gap and several random gaps, with a total missing rate of 
70.8%. The continuous gap containing most of the missing values is the 
dominant pattern, as analysed in Section 2.1.2. Fig. 6b shows how the 
complete sample data was split into training and testing datasets based 
on the missing patterns from the reference incomplete CWS data. The 
‘true’ values within the artificial gaps form the testing dataset for model 
evaluation, while the remaining data is used for training.

2.2.3. Initial feature selection
As shown in Table 2, meteorological data from OWS are selected as 

features, along with timestamp variables to better capture the diurnal 
cycle [35]. Beyond these variables, there is a noticeable time offset in air 
temperature readings between the CWS and OWS stations (Fig. 5b) due 
to varying heat storage capacities of underlying land types. To improve 
the gap-filling accuracy, such offsets should be considered when build
ing the relationships between CWS and OWS data by: (1) incorporating 
OWS air temperature data within an extended time window; (2) 
including past solar radiation data from OWS, since thermal storage flux 
is heavily influenced by solar radiation and heat storage capacity [12].

Based these considerations, we create two initial feature sets: one 
that includes preceding and subsequent OWS air temperature within a 
12-hour window and past 24-hour solar radiation data, and one that 
excludes them. Details of both feature sets are provided in Table 2. Given 
the limited training dataset size, we will further reduce the number of 
feature variables to prevent overfitting, as described in Section 2.3.

2.2.4. Feature scaling
Feature scaling is applied to ensure that each feature contributes 

equally and to accelerate algorithm convergence. We use min-max 
scaling, a commonly robust scaling method [40]. As shown in Fig. 7, 
for the training dataset, min-max scaling is directly applied to each 
feature and output variable based on their respective maximum and 

minimum values. While for the test dataset, we normalise and 
inverse-normalise the test dataset using the scaling parameters derived 
from the training dataset. This is designed to match real-world scenarios 
where test data is unavailable and the scaling parameters for the test 
output are unknown.

2.3. Training process

In this section, we will explain the principles of Multiple Linear 
Regression (MLR), Random Forest (RF), and Multilayer Perceptron 
(MLP), and how these algorithms are used to train the models. The 
training procedures for the models are shown in Fig. 8. The MLR training 
process involves three main steps: model structure building, feature 
selection and retraining the model on the entire training dataset. In 
contrast, the machine learning (ML)-based model training process in
cludes an additional fourth step for hyperparameter optimisation. The 
principle of each algorithm and operational details for each step will be 
further explained below.

2.3.1. Fundamental characteristics and applications of algorithms
MLR assumes linear relationships between feature variables and 

target variables, estimating missing values based on this linear model. 
Thus, it requires minimal computational resources. Additionally, the 
fitting coefficients directly reflect the importance of the feature vari
ables, making the MLR model easy to interpret.

RF is an ensemble method that estimates missing values by using 
multiple decision trees, each trained on different subsets of the data. 
Each decision tree is a nonlinear model providing its own estimate, and 
the final estimate is the average of these individual estimates. This 
approach allows RF to capture nonlinear relationships and effectively 
handle complex data structures. In addition, RF assesses feature 
importance by measuring how much each feature contributes to 
reducing impurity across all decision trees [2]. This information is 
valuable for feature selection and model interpretation and is thus used 
in selecting features for ML-based model training in this study.

MLP estimates missing values by modelling the relationships be
tween features and target variables through multiple layers of neurons. 
Compared to MLR and RF, MLP can capture more complex nonlinear 
relationships between variables [27]. However, MLP generally offers 

Fig. 3. Accumulated missing rate of CWSs in London in July 2018.
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lower interpretability compared to the other two models.

2.3.2. Operational details for training process

Step 1: Model structure building

The models, including MLR, RF, and MLP, are built using the Keras 
library with TensorFlow [11]. Specifically, MLR uses the ‘LinearRe
gression’ module, RF uses the ‘RandomForestRegressor’ module, and 
MLP uses the ‘MLPRegressor’ module. For more details, please refer to 
the TensorFlow website. 

Step 2: Feature selection

Due to the large number of variables in the initial feature sets 
(Table 2) and the limited training data, feature selection is necessary to 
prevent model overfitting [14]. Given the high correlation among fea
tures (i.e., multicollinearity) affecting linear models such as MLR [18], 
we adopt a correlation-based feature selection to reduce the multi
collinearity. This involves identifying highly correlated pairs using the 
pearson correlation matrix, and iteratively dropping the feature with the 
lowest correlation to the target variable from highly correlated pairs 
until no feature pairs exceed a threshold of correlation of 0.9, ensuring a 
more independent set of features. For non-parametric models like RF 
and MLP, multicollinearity does not affect predictive ability [25], so this 
step is omitted. Then, we refine the traditional stepwise method by using 
feature importance derived from RF, and the coefficients from MLR. 

Fig. 4. Missing lengths of CWSs within each missing rate range in London in July 2018.
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Instead of iteratively removing each feature to evaluate its significance, 
we use the feature importance scores to directly eliminate the least 
important feature in each round. This approach reduces computational 
burden and speeds up model optimisation. To further mitigate over
fitting risk for RF and MLP, we introduce the training sample size to the 
feature size ratio (SFR), requiring it exceeds 10 for reliable modelling 
[40]. Notably, the appropriate SFR depends on the complexity of the 
problem. For the winter season, where weather patterns are relatively 
complex (Fig. S2), an SFR exceeding 30 is necessary to achieve robust 
gap-filling performance. We then train the model with the updated 
feature set and evaluated its performance using 5-fold cross-validation 
(CV). CV is selected because it provides a reliable estimate of model 
performance and reduces the risk of overfitting, especially with small 
datasets [15]. The optimal combination of features will lead to the 
best-performing model. 

Step 3: Hyperparameter optimisation

For machine learning algorithms such as RF and MLP, hyper
parameter optimisation is crucial, as it directly impacts model perfor
mance, generalisation, robustness, efficiency, and interpretability [39]. 
In this study, we use Bayesian optimisation to find the optimal hyper
parameters due to its efficiency in locating the global optimum [31]. In 
each round, Bayesian optimisation identifies a promising combination of 

Fig. 5. (a) Spatial distribution of sample CWS (blue), official weather stations (red), and remaining CWSs (grey); (b) Corresponding temperature recordings 
over time.

Fig. 6. Splitting training and test set based on missing information of other incomplete reference CWS: (a) Missing patterns of reference incomplete CWS; (b) 
Training and test set splitting of sample CWS dataset.

Table 2 
Variables for initial feature set 1 and 2.

Variables Initial 
feature set 1

Initial 
feature set 2

Meteorological data 
from OWS

Air temperature ✓ ✓
Dewpoint ✓ ✓
Wet bulb temperature ✓ ✓
Relative humidity ✓ ✓
Wind speed ✓ ✓
Wind direction ✓ ✓
Station pressure ✓ ✓
Global solar irradiation 
amount

✓ ✓

Cloud total amount ✓ ✓
Derived hourly sunshine 
duration

✓ ✓

Precipitation amount ✓ ✓
Past data from OWS Air temperature from the 

past 12 h
⨯ ✓

Global solar irradiation 
from the past 24 h

⨯ ✓

Subsequent data from 
OWS

Air temperature from the 
next 12 h

⨯ ✓

Timestamp data Sine and cosine function of 
the hour of the day

✓ ✓
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hyperparameters, after which we train the model with these parameters 
and evaluate its performance using CV. This process is facilitated by the 
‘BayesSearchCV’ module. 

Step 4: Retraining model on the entire training dataset

During above selection process, one fold of the training dataset is 
always set aside for evaluation, separate from the training. Thus, after 
selection part, we retrain the model using entire training dataset with 
the best features and hyperparameter combinations.

2.4. Evaluation process

The well-trained models are evaluated on the test dataset. To 
conduct a comprehensive evaluation, we use metrics including mean 
absolute error (MAE), root mean squared error (RMSE), and the coeffi
cient of determination (R²). MAE measures the overall accuracy of the 
filled data, while RMSE, being sensitive to larger errors, helps highlight 
and quantify the model’s performance under varying scenarios, such as 
heatwaves and non-heatwaves. R² evaluates the models’ ability to cap
ture the overall trend. These metrics are defined in Eqs. (1) to (3): 

Fig. 7. Data preprocessing for training and test dataset.

Fig. 8. Workflow of building MLR, MLP and RF.
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MAE =
1
N

∑N

i=1
|yi − ŷi| (1) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(yi − ŷi)

2

√
√
√
√ (2) 

R2 = 1 −

∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − ymean)

2 (3) 

where yi presents the observed gap value, ŷi presents the corresponding 
estimated gap value, ymean presents the mean of all observed gap values, 
and N presents the amount of gap values.

2.5. Experiment scenarios

Table 3 outlines the experimental setup. In Scenario 1, we investigate 
whether including preceding and subsequent data in the initial feature 
set can improve model performance or not. Scenario 2 focuses on 
identifying the most efficient algorithm for handling various common 
missing conditions in CWS temperature data. Based on the missing data 
condition analysis in Section 2.1.2, we create CWS missing conditions 
with missing rates from 0 to 80%. For missing rates below 30%, random 
gaps are introduced, while continuous gaps are generated for missing 
rates between 30% and 80%. To further investigate the impact of 
missing length on filling performance, we also include missing condi
tions with a 70% to 80% missing rate and random gaps, as a contrast to 
continuous gaps at the same missing rate. The missing patterns for all 
conditions are based on incomplete CWS recordings, with the method 
details provided in Section 2.2.2. The experiment Scenarios 1 and 2 are 
conducted under a less-than-ideal condition, as described in Section 

2.2.1. In Scenario 3, we apply the best-performing algorithm from Sce
nario 2 to the remaining complete CWS recordings. This allows us to 
evaluate the generalisability and effectiveness of the method across CWS 
located in different areas with varying spatial characteristics.

3. Results and discussion

3.1. Scenario 1: impact of past data on model performance

Fig. 9 and Fig. 10 show the filling performance of various algorithms 
(MLR, MLP and RF) using different initial feature sets for a missing 
condition characterised by a 70.8% missing rate and continuous gaps. 
The OWS air temperature data serve as benchmark estimates. When the 
initial feature set 1 (Table 2) is used, MLR-based model (Fig. 9e) over
performs both MLP-based model (Fig. 9f) and RF-based model (Fig. 9g) 
in filling performance.

Specifically, noticeable temperature misalignments are observed 
between the CWS air temperature and OWS air temperature (Fig. 9d), 
particularly in time offsets and extreme values. The MLR-based model 
addresses time offsets well but struggles with the extreme values 
(Fig. 9a). This is because linear model is effective at capturing consistent 
trends over time, and the temporal offsets follow a regular cycle. 
However, extreme temperatures often involve non-linear dynamics and 
sudden shifts that MLR cannot capture well.

For weather patterns characterised by persistent low CWS air tem
peratures during non-heatwave periods, the MLP-based and RF-based 
models tend to overestimate temperatures, while they perform not bad 
during heatwave periods (Fig. 9b, c). However, their training set con
tains data from both heatwaves and non-heatwaves (Fig. 6b). This 
suggests that the MLP-based and RF-based models are underfitting when 
using feature set 1, as its features are insufficient to represent differences 
between heatwave and non-heatwave conditions.

Conversely, when using initial feature set 2, which includes air 
temperature within a time window and global solar irradiation from the 
past 24 h, the performance of all algorithms improves significantly 
(Fig. 10). The MLP-based model demonstrates the greatest improve
ment, achieving a MAE of 0.59 ◦C, RMSE of 0.73 ◦C, and R² of 0.94 
(Fig. 10f). The MLR-based and RF-based models also show good results 
(Fig. 10e, g). But for estimating the extreme temperatures, they do not 
perform as well as MLP-based model (Fig. 10a, b, c). This is also because 
extreme temperatures often involve non-linear dynamics and sudden 
shifts that MLP model captures more effectively than the linear MLR and 
RF models. Additionally, above results confirm that the OWS meteoro
logical data are highly correlated with the CWS temperature data, and 
their relationships can be used to estimate the missing values effectively.

3.2. Scenario 2: algorithm performance across missing conditions

Table 4 compares the filling performance of various algorithms 
across different missing conditions. MLP models achieve MAE ranging 
from 0.26 to 0.69 ◦C, RMSE from 0.35 to 0.88 ◦C, and R² from 0.92 to 
0.99. In contrast, the RF models yield MAE values from 0.45 to 0.73 ◦C, 
RMSE from 0.57 to 1.00 ◦C, and R² from 0.90 to 0.97. The MLR models 
show MAE ranging from 0.41 to 0.75 ◦C, RMSE from 0.61 to 1.04 ◦C, and 
R² from 0.87 to 0.97. These performances remain consistent even with 
high missing rates (70–80%). Overall, MLP outperforms both RF and 
MLR due to its superior ability to model the predominantly non-linear 
relationships between OWS data and CWS data, as discussed in Sec
tion 3.1.

As the missing rate increases, there are no large decreases in filling 
performance across various models (Table 4). This indicates that these 
methods are not particularly sensitive to varying missing rates. This 
stability is mainly due to the use of OWS meteorological data as refer
ence during the missing periods, rather than relying on the temporal 
patterns of the remaining CWS temperature data. The latter can be 
challenging to capture accurately when the training dataset is small, as 

Table 3 
Details about experiment setting.

Scenario CWS 
selected

Initial 
feature set

Algorithm Missing 
rate (%) 
a

Main gap 
types b

1 Sample 
CWS

1 MLR, RF, 
MLP

70–80 
(70.8)

Continuous 
(449)

2 70–80 
(70.8)

Continuous 
(449)

2 Sample 
CWS

Feature set 
proven 
more 
effective 
in scenario 
1

MLR, RF, 
MLP

0–10 
(5.2)

Random (4)

10–20 
(16.9)

Random (8)

20–30 
(25.2)

Random (7)

30–40 
(36.4)

Continuous 
(236)

40–50 
(43.5)

Continuous 
(211)

50–60 
(54.5)

Continuous 
(353)

60–70 
(66.2)

Continuous 
(420)

70–80 
(70.8)

Continuous 
(449)

70–80 
(71.0)

Random 
(19)

3 Remaining 
complete 
CWS

Feature set 
proven 
more 
effective 
in scenario 
1

Algorithm 
proven most 
effective in 
scenario 2

70–80 
(70.8)

Continuous 
(449)

a The values in parentheses in this column represent the specific missing rate 
for the selected referenced incomplete CWS recordings.

b The values in parentheses in this column represent the length of the largest 
gap for the selected referenced incomplete CWS recordings, measured in hours 
(h).
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mentioned in previous literature [23]. Notably, the filling performance 
is better when the missing rate is 0–10%. This results from the training 
dataset encompassing a broader range of weather conditions, enabling 
the model to capture the overall relationships more accurately.

For missing conditions with a 70–80% missing rate featuring both 
random and continuous gaps, there are no large differences in the filling 
performance (Table 4). This implies that the length of the missing pe
riods is not the primary factor affecting the performance of this method. 
Instead, the representation of the training dataset appears to be more 
critical. With the same missing rate, conditions with random gaps are 
likely to ensure that the training and test datasets include similar 
weather conditions. This similarity allows the training dataset to better 
represent the test dataset and the entire data distribution, resulting in an 

improved filling performance.
To verify that the representation of the training dataset is a primary 

factor, we compare filling performance at similar missing rates using 
training datasets that include only non-heatwave periods, only heat
wave periods, and a combination of both (Table 5). The results show that 
the model trained only with heatwave periods performs worse than the 
other two, with metrics of MAE at 0.61 ◦C, RMSE at 0.79 ◦C, and R² at 
0.93. This is due to the limited number of heatwave days in July 
compared to non-heatwave days. Consequently, the model trained solely 
on heatwave data fails to capture the relationships present during non- 
heatwave periods, leading to relatively poor filling performance. This 
confirms that the representation of the training dataset is a critical factor 
in model performance.

Fig. 9. Filling results and performance comparisons for different models using the initial feature set 1: CWS air temperature filled by (a) MLR; (b) MLP; (c) RF; (d) 
OWS; and their corresponding performance (e) - (f).

Fig. 10. As Fig. 9, but with initial feature set 2.
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3.3. Scenario 3: generalisability and robustness test

Fig. 11 shows the performance of the MLP algorithm in filling arti
ficially introduced gaps within the CWS temperature recordings. Each 
originally complete recording is processed under the worst-case missing 
condition (a missing rate of 70–80% with a continuous gap) as detailed 

in Table 3. The results show that the MAE across all samples ranges from 
0.42 to 1.07 ◦C, the RMSE from 0.53 to 1.35 ◦C, and the R² from 0.87 to 
0.98. Even the worst metrics outperform those from previous studies 
(Table 1) that used other imputation methods on different types of 
missing data.

The strong performance across different CWS locations, despite their 
varied spatial characteristics, shows the robustness of our approach. 
This effectiveness is due to training an individual MLP-based model for 
each CWS. Thermal storage differences in land types are accounted for 
by including past OWS air temperature and global solar radiation data in 
the initial feature set, as verified in Section 3.1. Feature selection during 
training identifies the most relevant features, enabling the development 
of a tailored model for each CWS. These individual models adapt to 
variations in urban form and geography, with their distinct selected 
features and corresponding coefficients reflecting the influence of local 
conditions on each CWS. Consequently, the approach enables effective 
gap filling and consistent accuracy across diverse urban areas.

Overall, MLP-based models show reliable filling performance across 
various missing conditions (Tables 4 and 5) and urban areas (Fig. 11) 
with R² above 0.87, MAE below 1.07 ◦C, and RMSE below1.35 ◦C. These 
results suggest that weather conditions within a one-month period 
exhibit sufficient consistency, making the training dataset—based on 
CWS availability in real-world scenarios—representative and supporting 
the model’s effectiveness in imputing missing data. Moreover, given that 
CWS locations often change monthly (Fig. S1), filling CWS gaps on a 
month-to-month basis is considered suitable based on our findings. To 
further validate this approach and assess its adaptability across seasons, 
we tested it using CWS and OWS data from December 2018 in London 
(Fig. S2), demonstrating consistent performance across different seasons 
(Fig. S3).

4. Conclusion

Crowdsourced data from citizen weather stations (CWS) are widely 
used in urban climate studies. However, crowdsourced data often have 
high rates of missing data with continuous gaps, which limits their 
applicability. Currently, no efficient method exists to address these gaps. 
In view of this, this paper introduces a novel data-driven method for 
addressing common missing data conditions in CWS air temperature 
datasets, especially continuous gaps, by using the relationships between 
CWS and Official Weather Station (OWS) records during periods of data 
availability.

We identify representative missing data conditions in CWS air tem
perature datasets, and find that the frequency of continuous gaps 
(exceeding one week) increases as the overall missing data rate rises. 
When the missing rate is below 30%, random gaps are more prevalent. 
And while continuous gaps dominate when the missing rate falls be
tween 30% and 80%.

We compare the performance of three data-driven algorithms 
(Multiple Linear Regression (MLR), Random Forest (RF), and Multilayer 
Perceptron (MLP)) under various representative missing conditions. 
MLP is found to be the most effective algorithm, with performance 
metrics showing MAE between 0.26 and 0.69 ◦C, RMSE between 0.35 
and 0.88 ◦C, and R² between 0.92 and 0.99. It outperforms the MLR and 
RF models, indicating that the relationships between CWS air temper
ature and OWS variables are predominantly non-linear. Due to compu
tational constraints, we only compare three algorithms. While other 
algorithms may exist to better capture the relationships, our results 
demonstrate that the MLP is sufficient for achieving a reasonable ac
curacy in data imputation. Future research could explore alternative 
algorithms, building on the insights provided by this study for model 
development.

We further validate the MLP algorithm using the CWS datasets from 
various urban areas, where even its worst performance results in an MAE 
below 1.07 ◦C, RMSE below 1.35 ◦C, and R² above 0.87. The winter 
scenario (Fig. S3) further demonstrates its applicability and adaptability 

Table 4 
Filling performance of various algorithms under different missing conditions. 
Best performance in ‘bold’.

Missing rate 
a

Main gap types b Algorithms MAE ( 
◦C)

RMSE ( 
◦C)

R2

0–10 % 
(5.2%)

Random gap (4 h) MLR 0.54 0.69 0.87
MLP 0.26 0.35 0.97
RF 0.41 0.52 0.92
Ref. 3.47 3.74 − 2.87

10–20 % 
(16.9%)

Random gap (8 h) MLR 0.64 0.82 0.92
MLP 0.47 0.71 0.94
RF 0.59 0.82 0.92
Ref. 2.97 3.26 − 0.32

20–30 % 
(25.2%)

Random gap (7 h) MLR 0.49 0.62 0.97
MLP 0.30 0.39 0.99
RF 0.41 0.61 0.97
Ref. 2.22 2.56 0.46

30–40 % 
(36.4%)

Continuous gap 
(236 h)

MLR 0.50 0.66 0.96
MLP 0.42 0.54 0.98
RF 0.75 1.04 0.91
Ref. 2.36 2.73 0.37

40–50 % 
(43.5%)

Continuous gap 
(211 h)

MLR 0.61 0.76 0.95
MLP 0.40 0.52 0.98
RF 0.66 0.96 0.92
Ref. 2.49 2.83 0.28

50–60 % 
(54.5%)

Continuous gap 
(353 h)

MLR 0.53 0.69 0.95
MLP 0.50 0.62 0.96
RF 0.62 0.88 0.92
Ref. 2.26 2.61 0.31

60–70 % 
(66.2%)

Continuous gap 
(420 h)

MLR 0.66 0.85 0.93
MLP 0.69 0.88 0.92
RF 0.61 0.85 0.93
Ref. 2.37 2.72 0.26

70–80 % 
(70.8%)

Continuous gap 
(449h)

MLR 0.60 0.78 0.93
MLP 0.59 0.73 0.94
RF 0.74 0.92 0.90
Ref. 2.38 2.69 0.17

70–80 % 
(71.0%)

Random gap 
(19h)

MLR 0.55 0.68 0.96
MLP 0.35 0.45 0.98
RF 0.52 0.70 0.95
Ref. 2.34 2.68 0.31

a The values in parentheses in this column represent the specific missing rate 
for the selected referenced incomplete CWS recordings.

b The values in parentheses in this column represent the length of the largest 
gap for the selected referenced incomplete CWS recordings, measured in hours 
(h).

Table 5 
Filling performance across various gap types at a 70–80% missing rate.

Missing 
rate a

Main gap types b Algorithms MAE ( 
◦C)

RMSE ( 
◦C)

R2

70–80% 
(79.6%)

Continuous gap: only 
including non- 
heatwave (276 h)

MLP 0.52 0.69 0.96
Ref. 2.41 2.75 0.31

70–80% 
(78.7%)

Continuous gap: only 
including heatwave 
(407 h)

MLP 0.61 0.79 0.93
Ref. 2.25 2.57 0.23

70–80% 
(79.3%)

Continuous gap: 
including heatwave and 
non-heatwave (472 h)

MLP 0.56 0.70 0.95
Ref. 2.33 2.68 0.27

a The values in parentheses in this column represent the specific missing rate 
for the selected referenced incomplete CWS recordings.

b The values in parentheses in this column represent the length of the largest 
gap for the selected referenced incomplete CWS recordings, measured in hours 
(h).
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across regions, with MAE ranging from 0.36 ◦C to 0.84 ◦C, RMSE from 
0.50 ◦C to 1.15 ◦C, and R² from 0.87 to 0.97. These consistent results 
across different urban areas and seasons confirm the effectiveness and 
robustness of the proposed method for filling common missing data 
conditions in CWS air temperature datasets.

We also evaluate the impact of different feature sets on model per
formance. Our findings show that including air temperature within a 
time window and past global solar radiation as features during training 
significantly improves all models. For CWS datasets with varying spatial 
characteristics, a model-based feature selection process can identify the 
most relevant features from the initial set, ensuring consistent filling 
performance. This training process can serve as a valuable reference for 
other machine learning applications, providing insights into effective 
feature selection and model training strategies for similar tasks.

The representativeness of weather conditions in the training dataset 
is crucial for our method’s effectiveness. Our findings indicate that 
filling CWS data on a month-to-month basis is appropriate, as datasets 
obtained during any available period within a month are sufficiently 
representative for model training and effectively fill missing data for 
that month. Due to practical constraints, such as the frequent monthly 
relocation of CWS, testing the method over longer periods is not con
ducted. Theoretically, the complete and highly correlated OWS data can 
serve as a reliable reference for assessing the representativeness of 
weather conditions. It is recommended that longer climate-related time 
series datasets with varying patterns are studied to assess the technique 
further.

The training and test datasets for each CWS do not directly account 
for local geographical conditions and urban form. However, since each 
CWS recording has a tailored model, these local conditions are indirectly 
represented within the model. Consequently, our approach can be 
adapted to various locations by developing a tailored model for each 
individual CWS station.

The entire training process is automated. Upon inputting a dataset, 
the proposed method automatically trains the model until the cross- 
validation score, measured by normalised root mean square error, sta
bilises. The finalised model is then used to fill gaps in CWS data, 
improving the usefulness of CWS datasets for urban climate research and 
enabling a more precise analysis of urban air temperature distributions.

However, while the features and coefficients of individual models 
reflect the influence of urban context and geographical conditions on 
CWS air temperature, they do not directly reveal how these factors drive 
temperature variations. Additionally, the spatial inequality in the dis
tribution of crowdsourced measurements may limit the method’s 
applicability in some areas. Future research will focus on modelling the 
relationships between filled CWS data and spatial features, such as 
buffered building data, to fill spatial gaps, thereby further enhancing the 
utility of CWS data for spatial analysis in urban climate studies.
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